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ABSTRACT This article describes how the design of digital learning objects can spark professional 
learning. The challenge was to build learning objects that would help experienced special education 
teachers, who had been teaching in math classes, to demonstrate their proficiency in middle and 
secondary school mathematics on the PRAXIS examination. While the learning sciences have focused 
on questions of learning new knowledge, the context of how adults recover information they had once 
studied has received less theoretical attention. The authors’ thesis is that a central aspect for helping 
students to remember content they once learned is to uncover areas of ‘conceptual breakdown’ in 
ordinary math problems. Their theory is that the phenomenon of conceptual breakdown is different 
for remembering knowledge than for learning new knowledge. Remembering math involves 
reassembling misplaced, broken or fragmented conceptual knowledge once learned in school. The 
design of learning objects allows us to determine which aspects of PRAXIS-type questions highlight 
conceptual breakdown, and leads us to build learning objects that would help learners reassemble prior 
concepts to improve capacity to solve similar problems. This article reports on a design-based research 
investigation to build, implement and assess a series of math learning objects for adult learners. Twelve 
web-based learning objects were built over the course of 2 years, and tested with 59 adult learners. The 
authors discuss how the collaborative design process was structured to elicit the breakdown points 
present in typical math problems; describe an assessment process that produced pre- and post-learning 
results; and comment on how the design process illustrated their theory of adult math learning 
recovery and on the prospects for designing learning objects for adult learners. 

This article describes the design of digital learning objects to spark professional learning. Our 
design challenge was to build learning objects [1] that would help experienced special education 
teachers, who had been teaching in math classes, to demonstrate their proficiency in middle and 
secondary school mathematics on the PRAXIS II [2] examination, a standardized assessment used 
for teacher certification and licensure. Exams such as the PRAXIS II act as a certification gateway 
for teaching in subjects in which the teacher is not certified (National Mathematics Advisory Panel, 
2008). For many of the teachers involved, taking the PRAXIS II exam did not involve learning new 
content. Instead, the teachers were faced with remembering knowledge they had once learned but 
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had now forgotten how to access and apply. In order to pass the test, teachers could either retake 
the appropriate content courses (Conference Board of the Mathematical Sciences [CBMS], 2001), 
such as those designed to teach new content about how to acquire, organize and deliver subject 
matter content (Fennema & Franke, 1992; Borko & Putnam 1996; RAND Mathematics Study Panel 
Report, 2002), or they could take test-preparation courses to help them pass the examination. 
Requiring experienced teachers to take new undergraduate or remedial math coursework is 
impractical, and training teachers to comply with the test process is certainly not consistent with 
the aim of the certification policy (and borders on unethical). Our task was to use learning object 
design to incorporate both approaches – a technological solution to help teachers remember and 
correctly use the math they once learned. 

Our approach to design is based on the insight that a central aspect for helping students to 
remember content they once learned is to uncover areas of procedural breakdown in their attempts 
to solve math problems. Remembering math involves reassembling misplaced, broken or 
fragmented conceptual knowledge once learned in school. The design of learning objects allowed 
us to determine which aspects of PRAXIS II-type questions highlight conceptual breakdown and led 
us to build learning objects that would help learners reassemble prior concepts to improve capacity 
to solve similar problems. This article reports on a design-based research investigation to build, 
implement and assess a series of math learning objects for adult learners. Over the course of two 
years, we built 12 web-based learning objects, and tested them with 59 adult learners. We found 
that they produced significant learning gains with their intended audience. 

The article offers an account of how our theory of professional learning led to a design 
process that resulted in the development of the Remembering Math Learning Objects (RMLOs) 
(Figure 1).[3] The first section of the article recaps how our thinking about the learning 
requirements for the objects, grounded in cognitive theory and human–computer interaction 
research, led us to a design strategy and format for the objects. We describe how our collaborative 
design process was structured to elicit the breakdown points present in typical math problems and 
how this process played out in the RMLO design. In the next section of the article, we discuss the 
RMLO format and function. Finally, we describe an evaluation process that reports the learning 
gains made by members of our target audience. We hope that the design process we describe will 
help shift research attention towards principled efforts to articulate how to ground the design 
process in a clear theory of action. 
 

 
Figure 1. Sample RMLO structure. 
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Designing a Design Process for Remembering Math 

The Remembering Math project is guided by a theory of action for how to spark adult recollection 
of previously learned content. Our interest was to develop learning objects that would help 
learners revive knowledge about appropriate procedures in situations that called for certain kinds 
of mathematical problem solving. This is not to suggest that all mathematical thinking involves the 
recall of procedural knowledge – math learning research clearly shows that mathematical reasoning 
is much more than recalling and applying appropriate formulae (cf. National Research Council 
[NRC], 2001). We would certainly agree that, even in this case, a comprehensive approach to 
teacher education in math would reach far beyond recall to encompass pedagogical content 
knowledge, learning from best practice examples of teaching, and understanding how to diagnose 
typical student learning patterns (Ball et al, 2005). Our aim here is much more modest and targeted 
toward the practical task of helping teachers recall what they need to pass content exams. The 
modesty of our design goals allows us to focus on the learning requirements of the specific task at 
hand, which in turn provides the kinds of specific connections between theory and design that can 
actually inform practical action. Our theory of action is based on answers to two questions: 
• How do adults forget previously learned math knowledge? 
• Are there common patterns of recall that obstruct appropriate use of once-learned math 

knowledge? 

In this section we provide some theoretical grounding for each of these steps in our theory of 
action, then describe how we organized and conducted a design process to develop the learning 
objects. 

How Do Adults Forget Math Knowledge? 

Our approach to understanding forgetting is grounded in theories of how people learn and 
appropriately apply procedural knowledge. Math content is typically learned in schools as a 
collection of procedures that need to be accurately applied to produce correct answers. Learners 
are judged to know the content if they can select and apply the appropriate procedure (as a 
formula) at the appropriate time to produce an appropriate answer. Homework is designed to 
allow the learner to repeat the procedure, with slight variations in application, a sufficient number 
of times so that the link between the rule and its application becomes a matter of habit. The 
emphasis on developing and applying procedural knowledge in the teaching of mathematics has 
long been criticized by math educators and reformers (cf. Ma, 1999; Hill et al, 2005). Reformers 
argue that emphasizing procedural knowing prohibits the development of concepts that serve to 
create mathematical fluency (Fuson et al, 2004). 
 
Schema theory as a descriptive model of forgetting. The frequent consequence of a procedural approach 
to learning math is long-term inability to remember the procedural steps or to forget the rules that 
govern the correct application of the procedures. Cognitive scientists have proposed schema theory 
to explain how information and procedures are organized into enduring, accessible capacities. 
Schemas link together facts, causal explanations, stories and procedures so that people can act and 
make predictions about the world (Murphy & Medin, 1985; Schank, 1986). Schemas also reflect the 
social contexts in which they were developed (Cantor et al, 1982). The knowledge embedded in a 
schema is activated either through top-down or bottom-up cues (Rumelhart, 1980). A top-down 
cue triggers the recall facts or procedures through exposure to a general concept; bottom-up cues 
enable the recall of concepts through an encounter with facts and procedures. From this 
perspective, a robust, working disciplinary understanding means developing a schema in which 
sequences of details are linked together and organized by general concepts, and concepts trigger 
activation of the appropriate procedures and facts. 

Mathematical misunderstanding, then, results from a disconnect between procedures and 
concepts or the inability to recall how steps in procedures hang together in ways that lead to the 
general concept. This approach to misunderstanding is readily illustrated in how adults recall the 
wrong procedure for a given problem, or are unable to recall how the procedure can be used to 
solve the problem. Such difficulties raise the question of how schemas actually break down and 
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lead to inaccurate recall. One problem is the unreliability or irrelevance of the information stored 
in a schema. Schemas are seldom clean, independent structures – they typically include scripts, 
seemingly cross-linked at random, that refer to details of the situation in which the learning 
occurred, emotional reactions to the learning process, and mathematically irrelevant stories about 
people, places or contexts referenced in the schema (Schank, 1986). If the scripts that link concepts 
and procedures are not sufficiently rehearsed or explained, the whole schema proves an unreliable 
structure to facilitate accurate recall. This leads to the seemingly random, fragmented strategies 
and emotions that occur when learners try to recall appropriate solution procedures. The other 
kind of problem occurs when schemas get ‘filled in’ with generic details drawn from related kinds 
of experiences. Learners can interpret problems in terms of what they expect the problem to be, 
and ignore salient aspects of problems that challenge schematic interpretation (Kolodner 1993; 
Spillane et al, 2002). This leads learners to respond to ‘false cues’ that trigger inappropriate solution 
paths because schemas distract learners from salient aspects of a problem. 

Schema theory helps us see the state of mathematical knowledge in the mind of a typically 
educated adult who does not use formal mathematical procedures in daily practice. Like the 
remains of an ancient city, the landscape is littered with once-functional artifacts that now lie 
scattered about with little apparent connection to the surroundings. Many of the relevant pieces are 
still present, but important pieces are either misplaced or completely inaccessible. New 
development has obliterated once-significant reference points and has co-opted existing 
architectures into new orientations. For our purposes, it is important to note that (a) there was 
once an organized system of reference that drew the disjointed pieces into an operational whole, 
and (b) this former organization can often still be recovered, with the appropriate prompts, to serve 
the functions it was once learned to address. 

Are There Common Patterns of Recall to Recover Once-Learned Math Knowledge? 

Most people forget the details and procedures of the math they learned in elementary and 
secondary schools without subsequent opportunities to use their knowledge in the course of their 
lives. Designers are faced with an interesting challenge in their efforts to build evocative learning 
environments: are there patterns in the ways that people forget and remember math knowledge, or 
does each person forget and recall in their own way? In the 1990s, researchers interested in applying 
cognitive theories to math and science teaching focused on identifying common misconceptions 
(Smith et al, 1994). Researchers assumed that misconceptions are caused when learners use schema 
they already have in order to understand new schema. This mismatch of new and old conceptual 
schema can lead to a series of common mistakes. Misconception research assumed that the 
common mistakes learners make in mastering new material implied common features in the 
underlying processes of knowledge organization. To be sure, misconception researchers did not 
assume uniform underlying cognitive processes, but they did assume that much of the variation in 
student struggles with key math and science concepts could be better treated once researchers had 
uncovered the common misconceptions. Understanding typical errors in the learning process 
would provide teachers with guidelines for understanding and shoring up learners’ conceptual 
structures in order to build more robust orthodox math and science schemas. 

Misconception research typically seeks to understand how to ‘fix’ prior learned schema in 
terms of the intended new schema (e.g. Hiebert & Behr, 1988; Brown & Clement, 1989). Our 
intention in the RMLO design was to decouple misconception from reform-based pedagogical 
aims. This decoupling would allow designers to elicit common misconceptions as paths to prior 
understanding, rather than as a condition for replacing prior understanding. If misconceptions 
reveal how learners typically misunderstand new knowledge, they should also help us see the 
patterns in how learners can recover prior knowledge. These patterns could then be used to 
structure activities that can anticipate how people typically latch onto the features of a given math 
problem. 
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Remembering Math Design Process 

In the field of computer interface design, John Carroll (1992, 2002) described a ‘minimalist design’ 
based on insights about how people typically navigate an interface. A minimalist design approach is 
particularly relevant for the development of learning objects based on common misconceptions. 
The minimalist design process involves observing the intended learning process, noting where 
learner understanding typically breaks down, and developing just enough instructional support to 
allow learners to make the appropriate moves or inferences. Minimalist design emphasizes the 
following characteristics (Carroll, 1992): 
1. allow learners to start immediately on meaningful tasks; 
2. minimize the amount of reading and other passive forms of training by allowing users to fill in 

the gaps themselves; 
3. include error recognition and recovery activities in the instruction; and 
4. make all learning activities self-contained and independent of sequence. 

Minimalist design stands in stark contrast to a standards-based instructional approach that seeks to 
specify all intended learning outcomes and behaviors for any learner. Standards-based learning aims 
for comprehensive approaches to teaching – minimalist design aims for the appropriate level of 
representation necessary to complete the given task. Finally, a minimalist approach to design 
requires considerable lead time for the designers to develop a process of observation and 
interaction that will reveal the appropriate opportunities for design. Standards-based learning 
environment designers can start straightaway on the design; minimalist designers must wait to 
understand exactly what needs to be designed. 

Our goal was to use the minimalist design strategy to identify where typical learner 
understanding would break down in solving traditional test problems. We began with a 
participatory design model (Schuler & Namioka, 1993; Shrader et al, 1999) that would integrate the 
typical learner’s perspective into the design process. A participatory design process can be easily 
adapted to meet minimalist design goals. Participatory design meetings can be used to engage 
learners in the intended learning process in order to identify procedural and conceptual 
breakdowns. Such a design process would begin with working toward a solution for a typical math 
problem while paying close attention to where understanding breakdowns occur. These 
breakdowns serve to identify occasions for learning object design. Once a prototype learning object 
is built, the team can repeat the design process to determine the degree to which the learning 
supports integrated into the object correspond to the occasions where understanding breaks down. 

While the development of an instructional design template was by no means unprecedented, 
the process utilized in template design for the RMLOs served as a means to instantiate learning 
opportunities that accorded with the theoretical framework derived at the beginning of the project. 
By eliciting occasions for conceptual breakdown, the design process allowed us to target design at 
just the points where learners were most likely to struggle. Building the learning objects around 
these occasions allowed us to test whether the breakdowns were indeed the places where a wider 
range of adult learners would also struggle. 

The design team first determined which problems would be best for the design of learning 
objects. We decided that anchoring the design process around specific problems would help us 
ground the solution paths in actual struggles with recollection. However, to avoid creating 
idiosyncratic learning objects, we agreed to work toward a common template for representation 
that would include the same kinds of prompts for each sample problem. In order to determine 
which problem types we would use for the design, we surveyed 75 adult learners to assess the 
difficulty of a range of sample math problems. We asked participants to rank each problem in terms 
of their confidence to solve the problem accurately. We then selected 12 problems that raters were 
least confident in their ability to solve (Appendix 1).[4] 

Remembering Math Learning Objects 

The Remembering Math Learning Objects were built to remind adult learners of the math they 
had once learned. The design process aimed toward two central goals: (a) a template that would 
provide a common foundation for representing remembering cues, and (b) the development of a 
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design team that would elicit the learner’s procedural and conceptual breakdowns. The following 
section recounts the iterative development path toward these two design goals. First, the design 
team identified four distinct occasions for remembering. Second, the design team composition and 
interaction was structured to elicit opportunities for breakdown. Third, the team then fitted the 
identified opportunities for breakdown into the context of the design template. 
 
Occasions for remembering. Before approaching the individual problems, the design team worked to 
create a template for the learning object that would offer a generic framework to identify where 
conceptual breakdown can occur for learners attempting to remember mathematical problems like 
those found on the PRAXIS II exam. This resulted in the identification of four discrete types of 
conceptual breakdown: in recalling how to start on a problem; in recognizing the pattern of a 
problem that allows for working through the intermediate steps; in remembering the appropriate 
sequence for problem solving; and in recalling the category of problem to which the example 
belonged. Learning object users were presented with four levels of structured ‘reminding’ that 
corresponded to the areas of conceptual breakdown: hint, sandbox, tutorial and chalk talk. Each 
‘reminding function’ used different forms of representation to address different aspects of the 
perceived conceptual breakdown in each math problem. 

 
Design team composition and function. Ensuring optimal design team composition was perhaps the 
most significant factor in the design of the Remembering Math Learning Objects. Our team 
included three kinds of participants: graphic designers, content experts, and intelligent novices. 
Graphic designer involvement in the core development process served to keep the team aware of 
the range of content representations. Content experts were required to ensure that the procedures 
we built into the learning objects would have solid mathematical foundations. However, 
investigations into expertise have revealed that content experts are not necessarily effective at 
conveying their knowledge of content within their field, unless they have expertise in both the 
content area and pedagogical mechanisms for instruction (Shulman, 1987; Bransford et al, 2000). 
For this reason, we determined that it was essential to balance content expertise on our design 
team by retaining members whose mathematical understanding had broken down in the same 
ways as the learners for which the objects were designed. 

If the team could not foresee potential learning breakdowns, it would be blind to the critical 
occasions for development. We thus decided to include several math ‘intelligent novices’ to lead 
the development process. The concept of intelligent novice has been used in cognitive psychology 
to describe learners with good generic problem-solving skills but weak domain content knowledge 
(e.g. Bruer, 1993). In our work, an intelligent novice is able to call into question those assumptions 
that the experts might not examine about what aspects of a specific worked example added 
explanatory value for our targeted learners. Just as with our intended audience, intelligent novice 
team members had the appropriate prior math instruction as well as a lapse between when they 
had received this instruction comparable to that of the practicing educators for whom the learning 
objects were being designed. Finally, the intelligent novices were of similar status to the content 
experts in order to prevent the content experts from setting the design agenda. If the intelligent 
novices had yielded the direction of the design to the content experts, it is likely that the learning 
object design would have reflected how learners ought to learn, rather than how they actually have 
learned. The intelligent novices, therefore, directed the design process, relying on their candor to 
identify the essential confusions that arose in the problem-solving process of a given math problem. 
The identified confusion then served as the starting point for learning object design as the group 
sought representations that would make the occasion for conceptual breakdown explicit, then to 
provide tools for learners to draw upon pre-existing mathematical ideas to ‘reconstruct’ a viable 
solution path. In addition these two team members were able to identify whether potential cues 
actually served as effective stimuli for helping learners to overcome conceptual breakdowns. 

The design process for building each learning object involved a sequence of three basic steps: 
intelligent novice talk-aloud; math expert suggestions; and collaborative design of the tutorial 
(Figure 2). The design of each learning object was structured around a specific math problem. The 
team began by utilizing and exploring the parts in a conventional instructional sequence where the 
math novices seemed to encounter difficulties. We invited the intelligent novice design team 
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members to talk their way through the solution processes until they got stuck on a specific 
definition, procedure or graphical feature of the problem. 

The math experts would then provide hints and definitions to clarify the initial breakdown. 
These suggestions formed the initial versions of the hints and of the variables that could be 
manipulated. After the experts and novices became familiar both with the problem and with the 
novice misunderstandings of the problem, the team would then use the graphic designer to 
storyboard a sequential representation of a problem-solving process that would directly address the 
identified bottlenecks. The graphic designer would then create a Flash-based representation of the 
storyboard as the first draft of the tutorial; the critique and refinement of this first draft of the 
tutorial would then serve as the subject for the follow-up design meeting. Finally, after a variety of 
users were invited to use the prototype learning object, the design team would meet once again to 
revisit the initial assumptions about the identification of bottlenecks, and the representation of 
hints, sandbox and tutorial learning object elements. 
 

 
Figure 2. Learning Object Design Process. 
 
Fitting occasions for remembering into the Learning Object template. The substantive design process 
involved fitting the identified conceptual and procedural breakdowns into the context of the 
Learning Object template. In the following sections we provide several illustrations of the functions 
and design of template features. 

Hints. We designed hints (see Figure 3) in order to provide a cue for a learner who 
remembers the right procedure but needs a salient clue to get over the initial misconception 
involved in choosing the right answer. Hints are designed to offer a direct suggestion about where 
appropriate procedure has broken down. The design team relied on math content experts to 
determine the appropriate hint included for each problem. Typical hints included the reminders 
that math teachers would give students at the point where students would go astray. For example, 
in Learning Object Problem 8 (see Appendix 1), the math experts talked through how to help 
students to begin thinking about the probability that a coin would end up in a given square. The 
‘problem-setting script’ proposed by the math experts pointed out how students needed to begin 
with an estimate of how many squares could border a given square. Thus, reminding students 
‘How many squares are adjacent to [a given location]?’ might help students with a fuzzy idea about 
how to solve this type of problem with a better understanding of how to set up the application of 
the probability calculation procedure. 

Other hints required the intelligent novices on the design team to ‘unpack’ the seemingly 
seamless chain of reasoning math experts used to apply the appropriate procedure. For example, in 
the RMLO 10 (Stem and Leaf plot), math content experts immediately identified the solution path 
while the intelligent novices were not able to remember how a stem-and-leaf plot worked. The 
design team reasoned that Learning Object users were not likely to have rich, flexible math 
understanding, and that a significant confusion in the way the problem was presented would 
probably thwart efforts to recover prior reasoning about this kind of problem. The hint ‘Each leaf 
represents the weight of one member’ was intended to remind the learners about how the graphic 
worked so that they could get to the issue of thinking though the variables presented in the 
problem. Hints were selected to clear up the kinds of conceptual or graphical confusion that test-



Richard Halverson et al 

104 

based story problems seem to specialize in, and allow learners who had a vague recollection about 
the appropriate solution path to focus on recalling what they knew. 
 

 
Figure 3. Hint example. 
 
Sandbox. The sandbox is a structured, graphical space where users can use customized tools to play 
with the key variables and contexts of the problem. Providing a structured place for learners to play 
with a problem could trigger recall of the appropriate procedures involved. Sandbox design aimed 
at developing the right conceptual tools for hands-on learners to trigger recall. 
 

 
Figure 4. Sandbox example. 
 
In the RMLO 6 (Logic of Negation), for example, the design team struggled to determine the 
appropriate representations that would allow learners to play with implications of negating ‘All P is 
Q’. We decided on a three-phase Venn diagram representation designed to show the set 
membership relation between P and Q. Figure 5 shows the initial condition: All P is Q. Learners 
can drag the circle that contains P in and out of the circle that contains Q to produce different 
propositional descriptions. These kinds of dynamic representations were designed to take 
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advantage of the graphical medium and provide learners with manipulable tools to facilitate recall. 
Each sandbox design converted the propositions in which the problem was framed into graphical 
elements that allowed for direct manipulation of salient problem variables. Other examples of 
sandbox design included visualizing different aspects of a three-dimensional cube in RMLO 2 (Area 
of a Cross Section) and the ability to manipulate a taxi to determine the relation of fare to time in 
RMLO 11 (Step Function). 

Tutorials. The tutorial presents a stripped-down, graphics-based instructional process designed 
to provide a cognitive walk through salient aspects of the problem. The tutorial was designed for 
learners who could not recognize or recall the problem type at all, but framed so that learners 
could recall the gist of the appropriate solution path without directly showing the answer to the 
problem. Tutorials represent a more comprehensive approach to reminding students not only 
which procedures are involved but how the procedures should be used. The design of the tutorial 
typically occupied 40-50% of the total Learning Object development time. The tutorial design 
process was typically led by intelligent novices who used the math experts as consultants to the 
process of working through the solution strategies. Instead of providing a global approach to re-
instruction, the tutorials were designed to begin exposition in the conceptual or procedural choke 
points that confused novices. Design team novices were challenged to explain just where 
conceptual and procedural confusions occurred, and to talk through the salient aspects of the 
problem that would need clarification in order to provide the solution. 
 

 
Figure 5. ‘Logic of negation’ sandbox. 
 
RMLO 7 (Pattern Recognition) provides a good example of the tutorial design process (Figure 6). 
Learners are asked to understand how to construct a variable to describe a pattern of additive 
growth (‘If the pattern below continues indefinitely, which of the following expressions could be 
used to find the number of dots in step n?’) In the Hint section, we found that novices got stuck on 
the terminology of what counts as ‘n’ in the problem – the number of the step or the number of 
dots? The tutorial begins with the reminder that n refers to the step number, then that the 
equations provided predict the number of dots. Once learners understand the relation between 
what counts as the variable and what the equations solve for, then determining the right answer is 
a matter of testing out which of the provided equations yields the correct answer. 
 

 
Figure 6. ‘Pattern recognition’ tutorial. 
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The tutorial design process leaned heavily on standard test preparation techniques such as looking 
to the answers to determine the appropriate solution path, eliminating obviously misleading 
answers, and applying generic problem-solving procedures. However, the design team approached 
the development of each learning object in terms of the specific requirements of each problem to 
address how understanding breaks down and could be recovered through engagement with a 
learning object. As we will discuss later, this encounter with the specific bottlenecks of each kind of 
problem was not the most efficient approach to design, but it resulted in opportunities to deeply 
explore how adult understanding breaks down in procedural recall and to design tools targeted at 
addressing recall problems just where they happen. 

Chalk talks. Chalk talks (Figure 7) provided the most comprehensive and traditional approach 
to sparking recall. A chalk talk session typically involved a math teacher talking through the 
problem-framing and solution process as if it were a classroom lesson. A situated cognition 
perspective (e.g. Clancey, 1997) suggests that the social and physical contexts in which new 
information is acquired plays a powerful role in recall. Scripts that are not rehearsed independent of 
the context in which they were learned, such as math lessons, are particularly vulnerable to 
restrictive association with a given time and place. The chalk talks were designed to virtually 
reconstruct the context of classroom presentation in which math lessons were originally 
experienced by many learners. The chalk talk design involved inviting a high school or college 
math teacher to present a solution to the particular problem. These mini-lectures were captured 
through the Camtasia software and stored as Flash files within the learning objects. Each object 
included access to this more traditional path to recall. 
 

 
Figure 7. Chalk talk. 
 
Although the design process resulted in a durable, generative Flash-based template to support 
subsequent RMLO design, the real work involved determining how to graphically represent the 
path from initial conception to breakdown in the context of a given learning object. We found that 
the development of content for each learning object took 10-20 hours and typically involved more 
than two iterations through the design team and with groups of potential users. This attention to 
the specific learning requirements for each math problem pushed the design process from an 
example of technology design for e-learning to an investigation of how multimedia learning objects 
can help researchers explore math understanding. In the discussion section below we hope to 
reinforce our central finding that, although the template for the learning objects was important, 
careful attention to the design process gives us clear insights into how the design of learning objects 
serves as a instrument to expand our understanding of how learners can remember math. 
 
Evaluating the learning objects. Did the Remembering Math Learning Objects actually help learners 
to remember dormant knowledge? We developed an online process to evaluate the effects of the 
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learning objects consisting of (a) a pre-question that was similar to the question in the learning 
object; (b) exposure to the learning object; (c) a post-question similar to the one provided in the 
learning object; (d) an opportunity to reflect on the strengths and limitations of the learning object, 
and (e) a set of questions about demographic characteristics of participants (Appendix 2). Each 
participant engaged with six of the learning object units during the assessment process. 

We evaluated the effects of the learning objects with a sample of 59 adult learners in the fall 
of 2006. Using convenience sampling, we drew participants from a group of non-math specialist in-
service and pre-service teachers enrolled in graduate and undergraduate education courses at the 
University of Wisconsin-Madison. The sample was comprised of 66% females and 34% males. The 
majority of the sample (53%) was aged 18-24, while 37% were between the ages of 25 and 34, and 
the remaining 10% were between 35 and 50 years old. In terms of ethnicity, a majority of 86% 
identified themselves as white/non-Hispanic, 5% as Hispanic/Latino, and 5% as Asian (with 4% 
self-identifying as other). As for qualifications, 47% of the sample were pre-service teachers working 
on both their bachelor’s degree and certification in a field other than math, 7% held a BA and were 
seeking only certification, and the remaining 46% were seeking a graduate degree or additional 
certification (i.e. Administrative Licensure). Only one participant was teaching math while the data 
was being collected, and one additional participant had prior experience teaching math. 

An initial analysis of the mean difference between pre-test and post-test scores indicates that 
on average, test scores improved after exposure to the learning objects. Using an average of the six 
pre- and post-test scores for each participant, we subtracted the pre-test average from the post-test 
average to derive an average level of improvement for each participant. The mean average level of 
improvement for the sample was approximately 19% between pre- and post-test results with a 
standard deviation of 23.25%. In order to know if we could trust these findings, we conducted a 
one-sample t-test to determine if the improvement between pre- and post-test was statistically 
significant. This resulted in a t-statistic of 6.2515 (p ≅ 0) (Table I). This demonstrates that in general 
the math learning objects improved the participants’ ability to accurately complete the problems. 
 

 n Mean 
pre-test 

Mean 
post-test 

Mean 
difference 

SD 

Pre-service 27 .40 .67 .27 5.908 

In-service 32 .59 .72 .13 3.215 

Total 59 .50 .69 .19 6.252 

 
Table I. Descriptive statistics on the difference  
in scores of pre-service and in-service teachers. 
 
When these results are disaggregated by pre-service and in-service participants, we find that the 
learning objects actually had a more powerful effect for pre-service teachers. While in-service 
educators demonstrated a mean improvement of 13%, pre-service educators improved by an 
average of almost 27%. However, the in-service educators performed at a higher average level, 
averaging 72% on the post-test, while the pre service educators only averaged 67% on the post-test. 
To what extent greater improvement for in-service teachers is a factor of lower scores on the pre-
test and therefore the possibility of greater improvement than pre-service teachers is unknown. 
This difference may also be attributable to sampling bias, as in-service teachers in the sample were 
self-selected by their participation in graduate studies. Even so, this finding warrants further 
investigation into whether the learning differences between the pre- and in-service groups is 
significant, and whether this indicates that the two groups have different needs in future RMLO 
design. While the level of improvement may represent adequate improvement for users who are at 
a failing level on the PRAXIS II exam to achieve passing, this might answer our immediate policy 
concern but fail to ensure that these teachers have actual mastery over the skills in question. 
Interestingly, this may actually be a reflection of the design goal of these learning objects, as they 
were created around the near term objective of giving educators adequate familiarity with the 
mathematical concepts to pass the test rather than being designed to inculcate deep conceptual 
understanding. 
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The second part of the Learning Object evaluation process invited participants to rate their 
experience interacting with the RMLO system. The RMLO assessment process guided each 
participant through six of the twelve learning objects. Participants were then invited to rate the 
value and the ease of use of each reminding function of each learning object on a 1-5 scale, where 5 
was the highest rating. Table II summarizes the overall rating results. The total possible rating is 
calculated from 59 RMLO users each exposed to six Learning Objects for a total of 354 possible 
ratings for the four learning object reminding functions across each participant’s experience. N 
refers to the actual number of ratings included in the system for each reminding function of each 
learning object. We inferred from the overall findings that the Hint and Sandbox reminding 
functions were rated most often, but that the Tutorial and the Chalk Talks were seen as the most 
helpful and easiest to use reminding functions. 
 

 Value of learning 
object 

Ease of use of learning 
object 

Total (354) n Rating n Rating 

Hint 259 (73%) 247 (70%) 3.39 

Sandbox 271 (77%) 4.38 265 (75%) 3.65 

Tutorial 224 (63%) 4.71 213 (60%) 4.37 

Chalk Talk 173 (49%) 4.63 157 (44%) 4.28 

 
Table II. Rating the value and ease of use of RMLOs.  
 
The contrast between the ease of use ratings for the Hint and Sandbox on the one hand, and the 
Chalk Talk and Tutorial on the other, may result from the relative difficulties of the problems 
around which the RMLOs were built. Participants who struggled with a given learning object may 
have found the Hint and Sandbox more difficult to use because of the limited reminding capacity 
for each function. Such users would then find more of the comprehensive explanations available in 
the Tutorial and the Chalk Talk to be a surer path to a given solution. However, the gap between 
the value and the ease of use of the Hint and Sandbox functions suggests that we need to 
investigate the relation between value and usability more carefully. Table III compares the ratings 
of pre-service and in-service teachers. Pre-service teachers rated a lower percentage of the learning 
objects, and gave slightly lower ratings than in-service teachers, but as seen in Table I, seemed to 
learn more from the RMLOs than in-service teachers. 
 

 In-service teachers Pre-service teachers 

 LO value LO ease of use LO value LO ease of use 
 n Rating n Rating n Rating n Rating 

Hint 149 (78%) 4.66 141 (73%) 3.35 110 (68%) 4.65 106 (65%) 3.43 
Sandbox 151 (79%) 4.37 148 (77%) 3.46 120 (74%) 4.38 117 (72%) 3.49 

Tutorial 142 (74%) 4.75 135 (70%) 4.33 82 (51%) 4.65 78 (48%) 4.42 

Chalk Talk 117 (61%) 4.67 108 (56%) 4.34 56 (35%) 4.55 49 (30%) 4.14 
Average 73% 4.61 69% 3.65 57% 4.55 54% 3.59 

 
Table III. Comparison of pre-service and in-service teachers on learning object reminding function value and usability. 
 
We invited participants to rate their confidence on the problem type on a three-point scale both 
before and after using the learning objects. On average, subjects felt more confident in solving the 
problem types they encountered after utilizing the learning objects. Interestingly, this change in 
user confidence did not have a reportable correlation with improvements in user scores across 
learning objects. Our preliminary results indicate that use of the learning objects improved both the 
users’ confidence in solving problem types and their capacity to do so. In addition to measuring 
users’ confidence, we were also able to use participant ratings about the helpfulness of individual 
learning objects and the specific features of the objects to guide the iterative redesign process. On a 
1-3 scale, with 3 being the most helpful, the participants rated the RMLOs at 2.45, with the pre-
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service teachers’ average at 2.37 and the in-service teachers’ at 2.54. This feedback provided useful 
information about where the design was flawed and which problems were not communicating the 
intended learning goals. 

It is important to note several limitations in the evaluation of learning gains described above. 
First, because we used convenience sampling, our sample of participants was voluntary rather than 
random. Second, we were not able to generate comparative outcome information on particular 
problems that provided the best learning gains, or particular features of problems that provided the 
most helpful recollection cues. Third, we invited the participants to engage with the learning 
objects without a sense of the context for which the objects would be deployed. Finally, and 
perhaps most crucially, if the learning objects were in fact utilized by the target population, they 
would probably supplement other test preparation activities. A full evaluation of the learning 
objects would produce more accurate information about the differential effects of the objects. Still, 
our initial efforts at evaluation confirm that there was a difference between pre- and post-tests in 
math problem performance, and provide a useful direction for further evaluation in subsequent 
studies. 

Discussion 

The design of learning objects is promising as a development path, particularly for adult e-learning 
due to its flexibility and modularity. If there are lessons to be learned from the design of the 
RMLOs, they lie primarily in the work taken to ensure that the objects fit the needs of the targeted 
learners. Our focus on the design process allowed us to elicit hypotheses about where conceptual 
breakdowns occur in given math problems. We observed that the breakdown typically occurred 
when learners forgot the specific functions of specialized terminology. Concepts such as functions, 
variables, the rules of inference and the features of reading a scatter plot broke down when learners 
tried to use their uncertain understanding to reason through problems. Of course, the assessment 
designers sought to anticipate these typical misunderstandings in multiple-choice answer options 
and designed items to discern the subject’s ability to understand conceptual nuance. Based on open-
ended feedback from our subjects we found that some of our objects seemed to directly illuminate 
the conceptual aspects required for successful solution while others seemed to miss the mark and 
had little effect on subject learning. Still, the promise of developing learning objects that could steer 
between no instruction and a full course of study is an appealing direction for reviving dormant 
knowledge in subject areas to which most adult Americans have had extensive exposure. 

There were several important issues that we need to address about this study. First, we 
emphasized the role of specific math problems in the design process. Textbook designers and 
classroom teachers have long engaged in the selection and reconstruction of solution patterns as a 
pedagogical aid. We do not suggest that there is anything particularly novel in the way we 
developed solution paths for these math problems. However, we do emphasize that our focus on 
conceptual and procedural breakdowns of novices in the design process helped us to identify the 
conditions for successful recall in our intended audience. Instead of beginning with standards for 
what math teachers need to know or adopting comprehensive approaches to re-teaching math or 
focusing on generic test-taking strategies to help learners pass the test, our attention to specific 
problems was intended to ground recall in authentic contexts that could legitimately bridge 
remembered math to real occasions of problem-solving. 

The focus on particular math problems also helped us to follow the guide of minimalist 
design. Carroll (1992) argued that learners desire environments with meaningful context and goals. 
We felt that focusing the design of the RMLOs on the solution of particular, difficult problems 
would provide a meaningful context for the Remembering Math learners, and that our interface 
should organize all learning aids to feature this central learning context. Similarly, Carroll argued 
that the interface should rely on the learner’s errors and recovery processes to facilitate the learning 
process. Focusing on specific problems allowed the RMLOs to provide Sandbox and Tutorial 
activities designed to exploit the typical errors learners would make to reconstruct past math 
knowledge. These types of design activities and rationales may well characterize the typical 
problem-development activities of learning object designers and textbook writers. Our decision to 
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highlight the breakdown elicitation process would then bring to the fore a critical aspect of design 
practice in order to guide subsequent learning object design. 

A second issue with our study was the discussion of the activity of one design team and the 
development and testing of 12 RMLOs. We may well have assembled an idiosyncratic team 
composed of novices with a peculiar sense of what constituted an obstacle to recall. Although we 
tried to temper the possible idiosyncrasy of the design team composition with a collaborative, 
iterative design process, to ensure the value of the design process we would need to (a) replicate 
the design process with other team members, and (b) conduct more systematic evaluation to 
ascertain which learning object features best trigger recall with which kinds of learners. 
Interestingly, the University of Wisconsin System used the Remembering Math templates and 
design process to develop RMLOs with design teams across the state in 2006-08. Working with the 
design teams involved in this broader development process might allow us to see how (or whether) 
the design process we specify here would result in similar RMLOs or similar outcomes when 
implemented at scale. 

Finally, we consider the question of whether the RMLOs provide an appropriate model for 
adult learning. The intentionally narrow scope of each learning object restricts the intended 
learning outcome to recalling the specific procedural or conceptual knowledge required to solve a 
particular problem. These objects would provide no substitute for a more comprehensive approach 
to math education that helps learners acquire mathematical ways of knowing or flexible problem-
solving skills. However, the restricted scope of the RMLOs has several advantages for the design 
and implementation of adult learning curricula. For example, focusing on specific problems 
allowed designers to understand how obscure and forgotten definitions of mathematical terms, for 
example, obstructed the problem-solving process of adult learners. Clearing up procedural details 
through scaffolded recollection cues may well allow experienced learners with a quick path to 
reviving lost knowledge instead of relearning old content from scratch. 

Of course, it might be noted that the majority of adult learners never really learned the basic 
math they are being challenged to recall in the first place and that no amount of recollection will 
recover what was never there. These teachers, one might argue, should not be teaching math to 
anyone and the testing process is well designed to remove their influence from the math classroom. 
Well-designed learning objects will obviously not spark the recovery of non-existent knowledge 
but the design and the implementation of the RMLOs helped many teachers bridge the gap 
between disconnected and useful mathematical knowledge. Learning tools that can provide a 
nudge toward recovery of previously disconnected knowledge could help these teachers, who may 
be effective in other areas of instruction, to once again engage students in mathematical 
instruction. 

Conclusion 

As e-learning becomes increasingly ubiquitous, the need for models of instructional design that fit 
the specific contexts and learners in question becomes increasingly important. In the Remembering 
Math project, we confronted the learning needs of adult learners who required learning tools to 
help them recall mathematical skills and concepts they had previously forgotten in a context that 
was not necessarily tied to a specific virtual or physical classroom setting. Towards this end, we 
established an original instructional design process for developing learning objects that would 
leverage digital settings to provide four unique modes of access to math concepts for adult learners 
whose individual needs were based on their ability to recall different parts of the math they needed 
to relearn. 

This article provides an example of what Chris Hoadley (2002) called a ‘design narrative’. 
Design research has recently emerged in education research as a path for building practical tools 
(such as curricula, assessments, and teacher support tools) by engaging practitioners in 
collaborative design and assessment activities (Cobb et al, 2003; Collins et al, 2004). Building and 
testing learning objects would provide us with both a valuable form of user testing and program 
refinement as well as granting insight into the conceptual breakdown and recovery practices of 
adult learners. However, recent discussions of design research (e.g. Design-Based Research 
Collective, 2003; Shavelson et al, 2003) have focused on the degree to which design research can 
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inform conventional approaches to educational research. Following Hoadley, we suggest that a key 
contribution of design research is to articulate the rationale for building an intervention so that 
others may replicate the complex process of artifact building. Our approach here was develop a 
theory of action appropriate for helping teachers to remember once-learned math, then to describe 
how the theory of action was operationalized in a series of tools designed to produce the desired 
learning. The design narrative we have assembled has the dual function of making a contribution 
to e-learning research and also making practical suggestions for designers to build new kinds of 
objects for adult learners. 
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Notes 

[1] We use the term digital learning object to refer to reusable tools designed to assist the learner in 
understanding smaller kernels of knowledge than those employed in traditional curricula. 

[2] The PRAXIS II exam is published by the Educational Testing Service (ETS) and is widely used for 
teacher licensure and certification. For more information, see: http://www.ets.org/ 

[3] The Remembering Math Learning Objects described in this article are available at 
http://www.slg.gameslearningsociety.org/cesa_files/learningobjects.php# 

[4] Each of these RMLO problems includes the ‘hint’ (described later in the article) developed by the 
design team. 
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APPENDIX 1. 
RMLO Problems (with Hints) 

1. Adding Fractions: If bd ≠ 0, then a/b + c/d = ? 
 

Hint: Adding fractions requires a common denominator. 
 
2. Area of a Cross-section: A rectangular solid with dimensions 1, 2, and 3 is shown below. What is 
the area of the cross-section ABCD? 
 

 
Hint: The diagonal of a rectangle is the hypotenuse of a triangle. 
 
3. Fraction Conversions: A certain recipe calls for ¼ cup of white sugar, ½ cup of brown sugar, 2¼ 
cups of flour, ¼ teaspoon of salt, and two tablespoons of cornstarch. The amount of cornstarch 
called for is approximately what fraction of the total amount of sugar called for? 
 

Hint: How much total sugar is there? 
 
4. Inequalities: The graph shown on the number line below represents the set of values of x 
satisfying which of the following inequalities? 
 

 
Hint: The endpoints are key to defining the factors. 
 
5. Ratio of Inscribed Squares: A square is inscribed in each of the circles below. The radius of the 
circle B is 2. What is the ratio of the area of the square inscribed in Circle A to the area of the 
square inscribed in circle B? 
 

 
Hint: Doubling the radius quadruples the area. 
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6. Logic of Negation: What is the negation of the statement ‘All P is Q’? (a) some P is Q; (b) some P is 
not Q; (c) If it is not Q, it is P; (d) If it is not Q, it is not P. 
 

Hint: What would make this statement false? 
 
7. Pattern Recognition: If the pattern below continues indefinitely, which of the following 
expressions could be used to find the number of dots in step n? 
 

 
Hint: n represents the step; # of dots is the value of the expression. 
 
8. Probability: The T-shaped figure below consists of six congruent squares. A coin will be placed 
randomly on one of the squares. It will then be moved randomly to a square adjacent to the square 
on which it was originally placed. What is the probability that, after the coin has been moved, it 
will be on square E? 
 

 
Hint: How many squares are adjacent to D? B? 
 
9. Slope and Perpendicular Lines: Which of the following is an equation of a line that is perpendicular 
to the line: y = 2x + 3? (a) y = -2x + 6; (b) y = 1/2x + 3; (c) y = 1/2x + 3; (d) y = 2x + 6. 
 

Hint: Slopes of perpendicular lines are negative reciprocals. 
 
10. Stem and Leaf Plot: The table below is a stem-and-leaf plot of the weights of 25 members of a 
men’s fitness club. What percent of the club members weigh less than 155 lbs? 
 

 
Hint: Each leaf represents the weight of one member. 
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11. Step Functions: A taxi ride costs $2.50 for the first ¼ mile or fraction thereof, plus $0.50 for each 
additional ¼ mile or fraction thereof. Which of the following graphs represent the total cost of the 
ride as a function of distance travelled? 
 

 
Hint: Open circles mean that the enclosed point is not included on the line. 
 
12. Proportional Reasoning: According to a survey of 100 students, 73 students took a math course 
and 57 took a music course. Of those surveyed, 22 reportedly took a math course but not a music 
course. How many students took neither a music course nor a math course? Hint: How many 
people took music? How many took math alone? 

APPENDIX 2. 
RMLO Assessment Process 
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